LAGR Mobile Platform: Software and Hardware

Tony Stentz & Herman Herman

National Robotics Engineering Consortium

Robotic Institute

Carnegie Mellon University

DARPA Mobile Platforms

PerceptOR

LAGR

LAGR Platform

Spinner

DARPA PerceptOR Program

Terrain Complexity

Easy

Hard

Obstacle type

- · Large, rigid positive obstacles: trees, rocks, buildings Up slopes
- Large negative obstacles: ledges, ravines Down slopes
- Small positive and negative obstacles: thin trees, poles, chain link fences, holes, ruts, ditches
- Entanglement hazards: wire. vine, bramble, branches
- Tire hazards: sharp rocks, rebar, glass
- Surface hazards: deep water, mud, ice, oily road
- Dynamic hazards: people, machines

Background type

- Flat, rigid, hightraction ground with no/low vegetation
- Vegetation sparse enough to avoid
- Vegetation too dense to avoid

 Thick vegetation hiding obstacles

Viewing

- Diffuse daylight
- Clear air

- Light smoke, dust, fog, rain, snow in air
- Uneven illumination

- Heavy smoke, dust, fog, rain, snow in the air
- Passive night

Conditions

Uncertainty

 Completely known— exact path traversed before

 Terrain type is known, such as swamp, mountain, desert, jungle

 Completely unknown

Component Technologies

Perception detection fidelity

Proximal:

- · body collision
- near tipover
- other boo boos

Planning

Near range:

Decreasing hazard

- reliable hazard detection
- · out to braking distance

Mid range:

- heuristic guidance
- based on contextual information
- out to sensor range

10 m

Decreasing vehicle modeling fidelity

Near range:

- kinematics (steer, body)
- dynamics (steer, brake, body)
- tire/soil interaction
- out to braking distance

Mid range:

- kinematics (steer, body)
- possibly beyond sensor range

Far range:

- kinematics (body)
- path metrics and constraints
- out to way point

Geometric Perception

The "easy" 80% of perception is reasoning about rigid, large-scale geometric shape.

Two primary geometric sensors:

Stereo vision cameras

Ladar-Based Geometric Analysis

Ladar-Based Geometric Analysis

Penetrability Analysis

Obstacle classification due to geometry from ladar

Obstacle classification due to compressibility and penetrability analysis

Stereo-Based Geometric Analysis

RANGER: Near Range Planning

Black = low cost White = high cost Pink = lethal cost

RANGER local navigator:

- steering dynamics
- speed adjustments
- body collision hazard
- tip over hazard
- high centering hazard
- discrete obstacle hazards

D*: Far Range Planning

LAGR Software Architecture

Control Loops

Autonomy Configurations

Autonomy Configurations

Operator Control & Data Logging Configuration

Simulation Configuration

API Description

Navigation sensors:

- Raw camera images
- Stereo range maps

Pose sensors:

- Raw GPS, IMU, odometry, bump data
- Filtered local pose (all but GPS)
- Filtered global pose (all including GPS)

Vehicle control:

- Turning curvature
- Speed (positive or negative)
- Reflex control

Local cost map:

- Local cell cost data
- Local cell elevation data
- Fusion rule (max, min, avg)

OCS + Video Display

